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At the body-diameter Reynolds number 2000, the axisymmetric wake behind a 
slender streamlined body of revolution remained laminar without any indication 
of breakup far beyond the five-body-lengths test section. The mean-velocity 
profiles were measured with close spacings in order to  obtain experimental 
information on the transient process from boundary layer to  fully developed 
wake. A semi-empirical theory was developed to describe the flow-field character- 
istics. 

1. Introduction 
Flow behaviour in the transient regime as a body boundary layer leaves from 

the trailing edge and eventually attains an asymptotic similarity is an interesting 
fundamental fluid-dynamic problem, and some theoretical investigations have 
been carried out already. Goldstein (1 930) was concerned with the development 
of the mean-velocity profiles immediately behind the trailing edge of an infinitely 
thin flat plate. Starting from the Blasius solution at the trailing edge, he ex- 
panded the stream function in a power series in essentially the downstream 
distance and obtained the first three terms. Tollmien (1931), on the other hand, 
obtained the far-wake asymptotic similarity solution. Goldstein (1 933) was able 
to determine the second approximation to  the Tollmien solution. The second 
approximation was then matched to the near-wake solution by an adjustment of 
the origin of the downstream co-ordinate in the asymptotic solution, in order to  
account for the finite boundary-layer thickness a t  the trailing edge. It is worth 
noting here that Goldstein encountered a mathematical difficulty in obtaining 
the third approximation. Stewartson (1957) removed the difficulty by including 
a logarithm in the series expansion. 

These theoretical investigations were the two-dimensional problems of the 
wake behind a flat plate. Goldstein (1933) compared his theoretical results with 
the experimental results obtained by Page & Falkner. Whereas the two agreed 
well in the region immediately behind the trailing edge, the experimentally ob- 
tained centre-line velocity as well as the lateral extent of the wake were already 
much larger than the theoretical predictions a t  the downstream distance of only 
half the plate length. The discrepancies were attributed to  flow instability. Sat0 & 
Kuriki (1961) made a detailed experimental investigation of the instability 
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phenomena and demonstrated that the prompt deviation of the flow field from 
the Goldstein solution within such a short distance as one-tenth of the plate 
length was indeed due to the instability, which resulted in the formation of 
KBrmbn vortex streets and eventual transition to turbulence. More recent 
work on the same subject by Mattingly & Criminale (1972) included the mean- 
velocity profiles, which showed a grossly different initial behaviour of the 
centre-line velocity in the near-wake region. The discrepancy is inexplicable and 
suspected to be due to  the characteristics of the hot-film anemometer, which might 
have been different from the assumed linear properties. I n  any event, the steady 
two-dimensional theories could not be experimentally substantiated owing to 
the inherent instability, which quickly destroyed the steady flow. 

We have been engaged in an experimental investigation of the instability and 
transition of the axisymmetric wake behind a slender streamlined body of revolu- 
tion with a pointed trailing tip which was as sharp as a pin. When the alignment 
of the body was critically accomplished and the Reynolds number was approxi- 
mately 2000, dye inserted upstream of the body was swept as far downstream 
as ten body lengths without any indication of unsteadiness or breakdown. This 
behaviour was quite contrary to  that of the two-dimensional wake, which was 
observed t o  form Kbrmbn vortices quite promptly at  a comparable body-length 
Reynolds number. The axisymmetric u-ake provided us with an excellent oppor- 
tunity to explore experimentally the bchaviour of the steady velocity field in the 
transient process from the boundary layer to the wake. This paper presents 
primarily the results of such an experiment. On the basis of the experimental 
information thus obtained, semi-empirical analyses were developed in order to  
describe the general flow characteristics. Before presenting the experimental 
results and discussions, however, a brief review of the existing theories of the 
steady axisymmetric wake will be given. 

2. Theoretical review 
The basic equations for the axisymmetric wake are 

u-++v-=-- y -  au au a au 
ax ay Y a y (  ay) 

and 
au av v 
- +- +- = 0, a x  aY Y 

in which U and V are dimensional velocity components in the longitudinal and 
radial directions X and Y respectively. When the velocity components and the 
co-ordinates are normalized by the use of the free-stream velocity U, and a 
characteristic length Z to give 

u = u/u,, 2, = (V/U,) (U,Z/l+, x = x/z, y = (Y/Z) (U,l/v)B, 
the governing equations become 
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au av v 
- +- +- = 0. 
ax ay y 

I n  terms of'the velocity defect zc = 1 - u, we obtain 

The asymptotic far-wake solution icl, which corresponds to  the Tollmieii 
solution for the two-dimensional wake, can be obtained after linearizing (3) under 
the approximation w1 4 1 ,  which yields 

and is given by 
w1 = x-lfi(7) = A x-l exp ( -  ; 7 2 ) ,  

where 

(cf. Rosenhead 1963, p. 455). The coefficient A is related to  the drag on the body 

Substituting to1 as given by (6) into the continuity equation (4), we obtain 

To this order of approximation, a t  which u.2, is omitted, the displacement area 

A = / o m ( I - g ) 2 r r Y d Y  

and the momentum (loss) area 

are identical. 

is sought in such a form as  
Now, if the second approximation to  the asymptotic similarity solution (6)  

w2 = 1 -u-Zc1 = .-2f2(77), 

one faces the same mathematical difficulty as in the third approximation 
attempted by Goldstein (1933) for the two-dimensional wake. Following the  
guideline used by Stewartson (1957), Berger (1968) successfully obtained the 
second approximation for the axisymmetric case by including a n  additional term 
involving a logarithm, i.e. by setting 

w2 = r 2 f 2 ( v )  +r2 In xfg(7). (12) 
1-2 
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When (12) is substituted into the equation for w2, i.e. 
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we obtain 

17-l (fh +7fg) +4f2 +7fh] In 2 [y-l (fz’ +vf$’’) +4f; +7fz’] -2-y; 
= A2x-3 exp ( - 72), (14) 

the right-hand side arising from the first approximation (6) and (9). For (14) to  
be applicable a t  any x, the following two equations must be satisfied: 

Tff,*” + ( 1  +r”ff2*’ +47j; = 0, 

rf; + ( I  +y2)fh +W2 = 27fz +2A27 exp ( -7”.  

(15) 

(16) 

The solutions of these equations satisfying appropriate boundary conditions are 

where < , I 2  2 7  ) (19) 

for brevity, and C is an undetermined integration constant. To this order of 
approximation the centre-line velocity defect is therefore given by 

(20) 1 -u(x,0) = Ax-l-gA2X-21nX +$42x-2 +cz-2. 

While the far-wake solution has thus been developed to an extent comparable 
to  the two-dimensional case, the near-wake problem is rather difficult to  treat. 
The difficulty in fact lies in our inability to predict properly the boundary-layer 
characteristics over a body of revolution whose diameter reduces to zero towards 
a sharp trailing tip. The shear layer in such a regime appears to  behave quite 
differently from that due to a conventional boundary layer, as observed by Patel, 
Nakayama 8r. Damian ( 1  974) with a turbulent boundary layer. Probably because 
of the lack of such knowledge, Viviand & Berger (1965) attempted a near-wake 
solution starting with the asymptotic logarithmic profile obtained by Glauert & 
Lighthill (1955) for the thick axisymmetric boundary layer along a circular rod 
of constant radius. Since the boundary-layer characteristics a t  the trailing tip 
in the present problem are not those of Glauert & Lighthill, the Viviand-Berger 
solution is not applicable. Under such circumstances, we have to  accept whatever 
mean-velocity profile we obtain a t  the trailing tip as our initial condition, on 
which ensuing flow development depends. 

3. Experiment 
The experiment was carried out in a recirculating water channel 2 ft  wide, 14 

ft  deep and 50 ft  long in the Hydrodynamics Laboratory, Princeton University. 
Initially the channel was designed as a constant cross-section tilting flume and 
was of poor flow quality, but its turbulence level was reduced to approximately 



Laminar wake behind a body of revolution 5 

0.1 yo by the insertion of a series of fine-mesh screens and small-bore honeycombs 
(Mattingly & Criminale 1972) and the mean-flow profile was fairly uniform. The 
water was recirculated by an axial pump which was driven by a 7 4  h.p. motor 
through a variable-speed hydraulic coupling. 

A bypass loop was provided to  treat the water for reliable operation of a hot- 
film anemometer, as described in detail by Baily (1972). First, deaeration was 
essential to avoid the formation of air bubbles on the probe (Morrow & Kline 
1971), and was accomplished by the application of cavitation and a vacuum 
pump. Second, solid particles suspended in the water were removed by two- 
stage Filtrine 'B '  type filters, which reduced the particle size to  60-80 pm, and 
by a 0-3pm Pall Trincor filter. The replacement of our original, metal honeycombs 
by Hexcel nylon fibrelphenolic resin honeycombs turned out to be the final key 
improvement, resulting in consistent and completely reproducible operation of 
the hot-film probe thereafter. 

The wake to  be studied was created by an axisymmetric body of length 12 in. 
and diameter 0.72 in. whose meridian shape was an NACA 0006 profile. The body 
was supported from above by four 0.002 in. tungsten wires each inclined 45" either 
forwards or backwards. I n  addition, two wires were attached to the lower side 
of the body and connected to weights. The body was mounted by means of a 
he-adjustment suspension mechanism in an inner channel test section, which 
was made of 3 in. Plexiglas plate and was 8 ft long, 23 in. wide and 13 in. deep. The 
inner channel not only separated the test section from the boundary layers on 
the side walls and the bottom of the flume, but also provided additional capability 
of h e  alignment of the body. Indeed, this much provision for critical alignment 
became quite useful because misalignments of the order of 1' resulted in detectable 
asymmetry in the mean-velocity profile in the wake, which, in turn, caused con- 
siderable variation in the stability characteristics. The wakes of the suspension 
wires could be detected in their close proximity, but were promptly dispersed 
and had no influence on the main wake of the body. The body was found by a 
laser beam reflecting from its surface to  be absolutely stationary, without any 
indication of sway or oscillation. 

Mean-velocity measurements were made by Thermo-Systems model 1050A 
constant-temperature anemometer system with a model 1061-2 digital read-out. 
The sensor was model 1210-20W, which is of hot-wire type and has a quartz- 
coated hot-film probe 0.002 in. in diameter with a sensing element of length 
0.04 in. The probe was calibrated in a small towing tank, 4 in. x 4 in. and 8 ft long, 
using the same water as in the main channel. The hot-film probe was mounted 
on a traversing mechanism, which enabled us to locate it within 0.001 in. accuracy 
in both the horizontal and the vertical direction in a plane normal to  the free- 
stream direction. The traversing mechanism was moved manually in the flow 
direction within the accuracy of a common rule, say &in. The probe support was 
L-shaped and was placed along and perpendicular to the flow direction. The 
vertical portion of the L-shaped support is protected from the flow by a sheath of 
larger diameter to alleviate the probe vibration due to the vortex shedding from 
the support. The sensing element was oriented normal to the flow and was always 
perpendicular to the radius from the wake axis. When this experiment was con- 
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ducted, our laboratory was not heated owing to  the energy crisis and the water 
temperature was 14.0-14-7 "C. The free-stream velocity U, was maintained a t  
approximately 5 in./s, so that the Reynolds number based upon the body 
diameter was 2000 throughout the experiment. The flow of the dye inserted 
indicated smooth rectilinear flow patterns in the wake as well as on the body 
without any separation or disturbance. Since the displacement area of the wake 
amounted to less than 0.05% of the cross-sectional area, the blocking effect was 
negligible and the static pressure was presumed to be constant throughout the 
wake. Further experimental details are described in the second author's thesis 
(Peterson 1975), which is concerned with the instability and transition at  a 
Reynolds number higher than that in the present experiment. 

4. Results and discussion 
Described in the following are the results of the mean-velocity profile surveys 

conducted a t  x = 0, 0.0625, 0.125, 0.25, 0.375, 0.5, 0.75 ,  1.0, 1.25, 1.5, 2.0, 2.5, 
3.0,3.5,4.0 and 5.0, the characteristic length 1 being the body length. Before each 
survey, the symmetry was checked, both in the vertical and in the horizontal 
plane, the minimum-velocity point was located and then the mean-velocity 
profile was determined in the horizontal plane containing the minimum-velocity 
point. 

Figure 1 shows the velocity profile a t  the trailing tip, the two symbols indicating 
measurements taken on oppoiste sides of the minimum-velocity point. The 
tendency towards a finite value near the axis is due to the fact that the traverse 
was actually made approximately 2% in. behind the tip and to the finite length 
of the hot-film sensing element. An estimate shows that the correction needed 
for the finite element length is probably negligible a t  most other measuring loca- 
tions. The ordinate of the figure is the conventional Blasius co-ordinate, and the 
curve is the Blasius flat-plate profile augmented to twice the thickness. Contrary 
to the case of the axisymmetric boundary layer along a constant-radius cylinder, 
the boundary layer a t  the trailing tip of a slender axisymmetric body is in fact 
much thicker than that on a two-dimensional flat plate of a comparable length. 
Since no measurements of the body boundary layer were actually made, detailed 
discussion of its behaviour is outside the scope of the present paper. It appears 
to  behave over the rear portion of the body such that, whereas the outer part of 
the boundary layer is merely swept downstream nearly parallel to  the free 
stream, the inner portion somehow adjusts itself to the decreasing body size. 
Under such circumstances, it is not difficult to imagine that the shear layer 
behaves quite differently from that due to a planar boundary layer. 

The initial development of the mean-velocity profile immediately behind the 
trailing tip is shown in figure 2 .  The outer part of the wake does not seem to 
change at  all, while the central portion around the wake axis is accelerated quite 
rapidly. The variation of the centre-line velocity u, with downstream distance x 
is given in figure 3, where it is compared with Goldstein's two-dimensional theory 
(1933). The Goldstein theory predicts an x* law in the near wake up to  approxi- 
mately x = 0-1. The present results follow an x* dependence as far downstream 
a s x  = 2 .  
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FIGURE 1. Velocity profile at trailing tip of the body. __ , Blasius profile with ordinate 
augmented by a factor of 2. 

The x* dependence of the centre-line velocity thus demonstrated in the very 
near region can be easily assessed by a simple procedure. The velocity profiles 
near the axis can be quite well approximated by hyperbolas 

ZL = (ZLZ +c2y2)$, (21) 

in which u, is the non-dimensional centre-line velocity and is a function of x, and 
c is assumed to be a constant related to the velocity gradient a t  x = 0, y = 0 by 

When the approximate velocity profile (21) is substituted into (1) and ( 2 )  and the 
limit y --f 0 is taken, we obtain an equation for u,: 

u,du,/dx = 2c2/uc, 

u, = (6C2X)t whose solution is 
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FIGURE 3. Centre-line velocity 'us. downstream distance. 0, present experimental data. 
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Y l b  
FIGURE 4. Non-dimensional velocity defect 08. normalized radial co-ordinate. For symbols 

see figure 2;  - , equation (27).  

1.0 
0 1 2 3 

Y l b  
F I G ~ ~ E  5. Non-dimensional velocity defect vs. normalized radial co-ordinate a t  locations 
further downstream. x ,  z = 1;  0, x = 2 ;  +, x = 3; A, z = 4; V, x = 5 ;  -, 
equation (27). 
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For our present experiment we find 
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V,Z/U = 3.27 x lo4 and [a(U/U,)/a(Y/Z)],,,=, = 28.8, 

hence U ,  = 0.534xi. (24) 

This relation is plotted as a straight line in figure 3. Although the nearly perfect 
agreement of (24) with the present experimental results indicates that  the 
essential process is axisymmetric radial diffusion, the degree of agreement and 
the longitudinal extent of validity are far better than expected and must have 
resulted from the particular velocity profile a t  the trailing tip. Unlike the flat- 
plate boundary layer, the boundary-layer development over an axisymmetric 
body depends upon its shape and probably 011 the Reynolds number also. There- 
fore (24) is unlikely to be universal. 

If the same analysis is applied to the two-dimensional wake behind a flat plate, 
we obtain 

u, = (3c241, ( 2 5 )  

in which c is now the Blasius constant 0.332. Hence 

U ,  = 0-692xa 

should be a universal formula independent of the Reynolds number. Equation 
(26), however, underestimates Goldstein’s result ( 1  930) by 10 yo, probably owing 
to  a stronger convective effect, i.e. the negative displacement effect by the ac- 
celeration near the plane of symmetry, which is completely neglected in the 
present approximation. 

Now let us turn our attention to the velocity-defect profile that is convention- 
ally used to  correlate the velocity distributions in wakes. Plotted in figure 4 is the 
non-dimensional velocity defect (1 - u) / (  1 - u,) vs. the radial co-ordinate nor- 
malized by the half-wake radius b, which is the radial distance where the velocity 
defect is +. It is indeed amazing that the velocity-defect profile acquires an 
approximate similarity quite promptly, within one-tenth of a body length behind 
the trailing tip. The velocity-defect profiles for the range further downstream 
are shown in figure 5 .  Although it is not quite accurate, particularly near the 
outer boundary of the wake, the similarity profile may be approximated by 

( I  - u)/( 1 - u,) = exp [ - ( Y/b)2  In 21. (27) 

Because of the formal mathematical similarity, one might hastily conclude that 
the asymptotic similarity solution (6) has been promptly reached and that the 
remaining problem merely amounts to locating an artificial origin of the x co- 
ordinate so as t o  correlate other wake characteristics. But this is not the case. 
For example, the half-wake radius increases almost linearly after a sudden initial 
jump (figure 6) throughout the entire test length of the present experiment, 
whereas the asymptotic far-wake solution predicts a &-power increase. 

The rest of the paper is concerned primarily with the proper characterization 
of the wake development. 
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FIGURE 6. Half-wake radius z's. dmvnstream distance. 0, present experimental data ; 
, equation (30) wit11 equations (33) and (38).  

With the similarity profile ( 2 7 ) ,  the momentum area becomes 

(28) 
b2 

@ = -  2h12 (1-U:L 

whichin turn is related to the drag coefficient C, ( = D/$pUin(&d)2)  by 

0 = +C,7rd2. (29) 

It is essential to stress that, unlike the far-wake asymptotic analysis, 1 - u is not 
neglected in comparison with unity in obtaining (28). The half-wake radius b is 
then given by 

and the displacement area A by 

b2 = $In 2C,d2/( 1 - u:) 

As before, we may now substitute zc as given by (27) into ( 1 )  and obtain the 
condition on the wake axis: 

du,  vl 
dx Uob2 

u,- = -(1-u,)4In2. 
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Substitution of (30 )  into ( 3 2 )  and an integration result in 

( 3 3 )  

in which the integration constant is determined by the condition u, = 0 a t  x = 0. 
Thus b and A are related t o  x through u,, whereas 0 should remain constant. 

These relations have correct asymptotic behaviour far downstream. I n  the 
limit u, --f 1, equation ( 3 3 )  becomes 

CDUnddl A 
32 v lx x ’  

l - u c z  

in agreement with (6) .  Equation (30) will tend to  

ln2CDd2 4vX 
8 un 

b2 z -- A x =  -1n2, 

( 3 4 )  

( 3 5 )  

in accord with ( 7 ) .  It is obvious from (29) and ( 3 1 )  that A will be identical with 0 
in the far-wake limit. 

I n  the near-wake limit u, --f 0,  however, ( 3 3 )  becomes 

and does not comply with the proper +-power property as expressed by ( 2 3 ) ,  
simply reflecting the fact that the similarity profile (27 )  is not established 
immediately. Incidentally, the half-wake radius may also be calculated using the 
hyperbolic profile ( 2 1 )  exclusively, resulting in 

b = - - [( 1 - u,) (1 +3u,)]B. 2c V)i U,l ( 3 7 )  

This relationship explains quite well the initial behaviour of b, which first jumps 
almost instantaneously from the boundary-layer value and then remains nearly 
constant before increasing steadily. Equation (37 )  indicates, however, that  b 
decreases for u, larger than 4, which corresponds to  x = 0.243. Hence i t  fails to  
represent the experimental values of b properly beyond this limit, probably 
because the assumed hyperbolic profile does not adequately describe the true 
velocity profile away from the near-axis region, particularly for larger values 

The momentum area and the displacement area were calculated from the 
measured velocity profiles and are plotted in figure 7 .  From the average value of 
the momentum area, we find 

With this drag coefficient the relation between the centre-line velocity defect 
I - u, and the downstream distance in body lengths x is determined by (33 ) .  
This relationship can then be used to  relate the half-wake radius b and the dis- 
placement area A to  x. 

General features of the dependence of 1 - u, on x are well represented by the 
present analysis as shown in figure 8. Although the present measurements extend 

of u,. 

CD = 0.553. ( 3 8 )  
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FIUURE 7 .  Variation of displacement area (triangles) and momentum area (circles) with 
downstream distance. - -, average momentum area = 0.1 12 in.2; - ,equation (31) 
with equations (33) and (38). 

- -  
0.1 1 lo 

X 

FIGURE 8. Centre-line velocity defect z's. downstream distance. - , equation (33) with 
CD = 0.553; - -, equation (33) with Co = 0.395; - - -, asymptotic solution (6)  with 
A = 2.06; - - - -, second approximation (20) with C = 0. 

as far downstream as five body lengths, I - u, is still far from reaching its asymp- 
totic form. No simple shift of co-ordinate origin makes either the experimental 
data or (33) match with the asymptotic solution. By a shift of co-ordinate origin, 
it is possible to make 1 - u, inversely proportional to  the adjusted x co-ordinate 
but the proportionality factor cannot be A .  Moreover, the same amount of origin 
adjustment cannot even make the half-wake radius b proportional to  x*. 

It is, therefore, needless to  repeat that the analysis presented here differs from 
the asymptotic solution in the retention of 1 - u compared with unity. The 
second approximation (20) is also shown in figure 8 (with A = 2.06 and C = 0) to  
demonstrate that it does not give much improvement over the first approxima- 
tion. Nevertheless, (33) overestimates x appreciably for given u,. I n  fact, if C, 
were reduced by 40 yo, i.e. C, = 0.395, agreement with the experimental values 
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FIGURE 9. Wake Reynolds number vs. downstream distance. 0, present expcriinental 
data;  ___ , equation (39);  - - -, asymptotic solution (41).  

would become almost perfect, but we can find no justification for such an adjust- 
ment. The disagreement cannot be accounted for by asymmetry in the wake. 
At the time of writing we do not know of legitimate means of obtaining agreement. 

I n  figure 6, b is cross-plotted against x. The present analysis describes its general 
behaviour quite well except for the initial jump. The analysis underestimates the 
experimental values owing to the difference between the experimentally obtained 
velocity profile and the similarity profile, the €ormer being narrower than the 
latter near the outer boundary. Whereas b is obtained from the experimental 
profile as the radius where the velocity defect is half the centre-line velocity 
defect, the analysis determines b by matching the integrated momentum 0. 
Therefore, the discrepancy shown in figure 6 can be easily reconciled by re- 
defining b by use of (28) and measured 0 and u,. The reduction of C, by 40 %, 
which made the analytical relationship between 1 - u, and 5 agree with the experi- 
mental data, decreases the prediction of b to unacceptably low values and hence 
is not a consistent procedure. 

Figure 7 shows excellent agreement between the experimental values of A and 
the analysis. This figure also demonstrates that substantial differences between 
A and 0 still exist and that approaching the asymptotic similarity solution is 
indeed an extremely slow process. The strength of this particular figure in making 
such a conclusion is that, whereas one may still try to reconcile the differences 
between the experimental and the asymptotic values in other figures by a shift 
of the virtual origin of x, such an adjustment is of no avail with the differences 
between A and 0. 

Finally, the wake Reynolds number defined by (Uo - U,) b/v is plotted in figure 
9 against x. According to the semi-empirical formulation developed here, it is 
given by 
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which agrees quite well with the experiment. Equation (3) has the following 
far-wake asymptotic form for u, --f 1 : 

or with the present experimental values, 

(U,- Uc) blv z 63Ox-). (41) 

It is seen that the wake Reynolds number indeed decreases with downstream 
distance, but a t  a rate much slower than the asymptotic solution, and has not 
reached the asymptotic state. 

5. Conclusion 
The mean-velocity profiles in a steady laminar wake behind a slender axi- 

symmetric body were measured a t  the body-diameter Reynolds number 2000. 
The centre-line velocity increased with downstream distance t o  the power $, this 
trend persisting for as long a distance as two body lengths. The velocity profiles 
acquired an approximate similarity quite promptly, within one-tenth of a body 
length. The experimental results and the semi-empirical analysis based upon 
approximate similarity, in which the nonlinear term is retained, clearly indicated 
that the flow development is an extremely slow process, requiring a far longer 
distance than the five body lengths available in the test section t o  reach the 
asymptotic similarity condition. 
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